THE ASTROPHYSICAL JOURNAL

Carbon Cycle Instability for High-CO2 Exoplanets: Implications for Habitability

R. J. Graham1 and R. T. Pierrehumbert2

1 Department of Geophysical Sciences, University of Chicago, 5734 S Ellis Ave. Chicago, IL 60637, USA; 2 Department of Atmospheric, Oceanic, and Planetary Physics, University of Oxford, Clarendon Laboratory, Parks Rd. Oxford, OX1 3PU, UK

> 汇报人: 王胤杰 2024年7月31日

IntroductionMethodPrecipitationWetheringCarbon CycleConclusion经典的宜居带(HZ)隐含了这样一种假设:碳酸盐-硅酸盐循环调节大气中的二氧化碳分压(pC02),具有陆地和地表水的系外行星上,不同的恒星辐射下维持宜居性。

雨水和气态二氧化碳生产碳酸(H2CO3)
雨水pH值大约为5.6,碳酸可以溶解硅酸盐、碳酸盐岩石:
2CO₂ + H₂₀ + CaSiO₃ → Ca^{2+} + 2 HCO₃^{-} + SiO₂
河流径流将这些产物带入海洋,海洋钙化生物使用Ca2+和
HCO3-构建的壳和骨骼,碳酸盐沉淀;

 $Ca^{\{2+\}} + 2HCO_3^{\{-\}} \rightarrow CaCO_3 + CO_2 + H_{2O}$ 売和骨骼中的碳酸钙(CaCO3)在海洋生物死亡后沉入海 底

一些可能被带入深地幔,与二氧化硅 (Si02) 反应为硅酸钙 (CaSi03) 和二氧化碳 (C02),通过火山活动等返回大气:

$$CaCO_3 + SiO_2 \rightarrow CaSiO_3 + CO_2$$

地球上99.6%的碳封存在长期岩石储库中,只有0.002%的碳存在于生物圈中。

⁽Xiong et al. 2022)

Introduction	Method	Precipitation	Weath	ering	Carbon Cycle	Conclusion	
考虑风化后低恒星 降水会随着pC02和 风化会随着pC02的 不稳定的碳循环, 雪球地球)的条件	2辐射和高pC02全球气口温度的增加而减少的增加而减少(正反馈可能会导致C02的失去。	【候模型模拟结果: (反直觉的) 贵的) 控积累或减少到更必	全球蒸发和 令(可能是	降水-气候 一个被低(全球降水≤ 态表示: 其中:	耦合与能量限制 古的因素是将水蒸发到大 率的限制。这种限制来自 [<i>S</i> _{abs} = <i>H</i> _{{rad,sens}	大气中的能量成本对 日本能量预算的稳 [] [] [] []	
实际模拟 ↑				 Sabs 定地表吸收的日照重, Hrad, sens 是长波(红外)和显热(干燥湍流)对地表的综合加热/冷却通量, L是地表的潜热通量(与蒸发相关)。 CO2浓度对能量平衡的影响 			
水文循环	→碳酸盐风化	→ Co2		 ·提高CO2浓 长波冷却, ·这些效应 (L),进 	农度增加边界层中的水蒸 增加边界层的稳定性。 会减小 Hrad, sens的大, 而增加全球平均降水量	⁵ 气积聚,抑制地表的 小,增加蒸发通量 。	
t	温度	Ť		极端情况 ⁻ •足高温度 所有的入身	下的能量分配 : 潜热通量占据方程右位 时辐射都用于驱动蒸发。	侧的主导地位,几乎	

虽然该系统的行为尚未完全绘制出来,但结果表明硅酸盐风化可能无法在名义HZ的外缘维持宜居条件

使用的模型:

1. Isca GCM框架:

- 1. 使用伪谱动力核心在球面上求解静力压力坐标原始方程。
- 2. 水平分辨率为T42(64个纬度,128个经度),垂直有40个sigma-压力层。

2. 对流和水文配置:

- 1. 使用简单的Betts-Miller对流松弛方案(Betts & Miller, 1993)。
- 2. 使用桶式水文配置来控制蒸发, 仿照Manabe (1969) 的土壤处理方法。
- 3. 边界层通量使用默认的Monin-Obukov方案处理(如Frierson等, 2006)。

3. 陆地和海洋配置:

- 1. 模拟中的陆地配置包括现代大陆的简化、无地形的多边形表示。
- 2. 使用薄片海洋配置,将混合层深度减少至10米,以加速模拟的能量稳态收敛。
- 3. 所有模拟的倾角和偏心率设置为零,没有季节循环,昼长均为24小时,特定于类似地球的快速旋转行星。

4. 无云假设:

- 1. 当前实现是无云的,避免云反馈的不确定性。
- 2. 高C02条件下低层高反照率水云预计会显著减少,减少了简化的严重性。

5. 辐射传输:

- 1. 使用SOCRATES代码,采用相关k方法求解平行平面、双流近似辐射传输方程。
- 2. 高辐照量、低pCO2模拟使用UK Met Office的标准光谱文件;高pCO2模型配置使用NASA GISS的ROCKE-3D数据库中的光谱文件。

实验设计:

1. 低pC02模拟:

- 1. N2为主的大气,地表压力为1个大气压,CO2浓度为200、300和400 ppmv,TOA辐照量为S = 1250 W m-2。
- 2. 高pC02模拟:
 - 1. TOA亚恒星短波辐照量为S = 675、750、800或1000 W m-2, CO2分压为1、2、3或4个大气压。
 - 2. 大气H20含量由1sca的水文循环决定。

3. 模拟运行:

1. 每次模拟运行直到TOA和地表能量通量平衡在<1%内,然后至少再运行一年,结果来自每次模拟最后一年数据的平均值。

全球平均表面温度作为pCO2在各种辐照量S下的函数 低pCO2、高辐照量模拟显示ECS为3.4 K,接近现代地球的估计值(1.5-4.5 K) 高pCO2、低辐照量模拟由于CO2的自增宽效应,所有ECS值均约为15 K

全球平均吸收的辐照量和全球平均向上的潜热通量作为pC02在各种条件下的函数 低pC02、高辐照量模拟,潜热通量(○)随着pC02增加而增加,但仍远低于吸收的辐照量(★) 高pC02、低辐照量模拟,其吸收的辐照量大部分用于蒸发的潜热

Introduction	Method Pre	ecipitation	Weathering	Carbon Cycle	Conclusion
	低pC02. 高辐照量	富	ipC02. 低辐照量	_	_
行为一致性	与地球气候模拟预期一致	不	同于地球气候模拟	$S_{\{abs\}} = H_{\{rad\}}$	$L_{l,sens} + L$
全球平均表面潜热通量	随pCO2增加呈正趋势	臣	ipCO2增加而减少		
地表向上的长波辐射通量	随pCO2增加呈负趋势	E	ipC02增加而减少	风化	CO2
降水量	随pCO2增加呈正趋势	陞	ipCO2增加而减少		
潜热通量增加率	1.1% K-1,略低于地球模拟中值 1.7% K-1	减少			
总能量吸收(Sabs)	略有减少	大幅	ā减少,反照率增加		•
潜热通量与Sabs关系	潜热通量远低于Sabs设置的极限	大部分S	abs用于蒸发,高达92%		—
长波通量变化	从200 ppmv到400 ppmv减少8.7 W m-2	随pC02增	曾加减少, 甚至变为负值	循环	温度
显热通量变化	变化很小	显著	减少, 甚至变为负值	•	Ļ
降水率	增加	随pC02增加而减少	,表面温度升高反而降水率下降	条	
反照率变化	无显著变化	从0.16-0.1	7增到0.26-0.27(3 bar)	Ţ	
表面温度变化	上升		显著上升	▼	

Introduction	Method	Precipitation W	eathering	Carbon Cycle	Conclusion	
	特性	WHAK 风化模型		MAC 风化模型		
	主要参考文献	Walker et al. (1981)	Mah	Maher & Chamberlain (2014) 考虑风化区内粘土形成的影响		
	模型基础	以硅酸盐溶解的动力学限制为基础	考虑			
	风化速率的限制因素	硅酸盐溶解的动力学过程		水流通过风化区的速率		
	温度依赖性	指数温度依赖性	温度	廷和水流速率的复合依赖性		
	CO2依赖性	以nC02的幂律依赖性表示	风化产	2物最大浓度取决于化学平衡		
	公式表示	$F_{ m sil} = rac{W_{ m ref}}{\gamma_{ m Earth} imes 4\pi R_{ m Earth}^2} imes \expigg(rac{T - T_{ m ref}}{T_{ m e}}igg)igg(rac{ m pCO_2}{ m pCO_{2, m ref}}igg),$	$F_{\rm sil} =$	$\frac{\alpha}{[k_{\rm eff}]^{-1} + mAt_{\rm s} + \alpha [qC_{\rm eq}]^{-1}},$		
	主要参数	W_ref:风化速率常数 B:风化速率对CO2分压变化的敏感度指数 Te:地表温度	a k t_s:接触时	:综合常数, A:暴露面积, _eff:有效风化速率常数 问, q: 水流量, C_eq: 平衡浓度		
	参数值的来源	实验室溶解实验结果	结合	了地球化学数据和水文模型		
	运行环境	广泛用于零维、单维和三维气候模型	适用于地球	适用于地球类系外行星的全球平均和局地模型		
	气候反馈机制	负反馈,通过温度和CO2加速风化,调节碳循	i环 负反馈在低p	CO2下有效,高pCO2可能变为正反馈		
	水文的敏感性	较小,主要受温度和C02影响	高,对	水流速率和降水变化非常敏感		
	潜在的不稳定性	稳定性较高,风化速率随温度和CO2增加而增	-加 在高pC02、低	纸辐照量条件下可能导致碳循环的不 稳定		
	地理和地质因素的考虑	考虑了全球平均的地质和气候因素	强调	局地地质和水文条件的影响		
	对风化产品浓度的处理	风化产物浓度不直接考虑	风化区内风仙	化产物达到最大化学平衡浓度的影响		
	模型简化假设	忽略了粘土形成对风化的抑制作用	考虑了	*粘土形成对风化速率的限制		
	适用范围	适用于一般的气候模拟	特别适用于研	开究水文条件对风化影响的行星气候 模拟		

全球 WHAK 风化速率(Tmol yr-1)与不同pCO2值之间的关系,针对多种辐射量进行计算 风化通量根据 WHAK 公式(方程式(3))进行计算 对于所有的模拟,随着CO2的增加,风化速率都在增加。

标准参数值的全球MAC风化速率(Tmol yr-1) 与不同 pCO2 值之间的关系,针对多种辐照量进行计算 风化通量根据 MAC 公式(方程(4))进行计算

低 pC02 模拟,风化速率随着 C02 的增加而增加;高 pC02 模拟,风化速率随着 C02 的增加而减少

高 pC02 模拟中, C02 保持恒定时,全球风化速率随着辐照量的增加而下降 与直觉相反,表面温度和降水量的增加,这些因素应风化速率的上升

MAC风化(左)和降水(右)的空间分布变化,伴随TOA辐照量的增加,pCO2 = 2bar 曲线的y值表示具有至少与相应x轴值一样多的风化通量(左)或降水量(右)的陆地比例 S的增加,总降水量增加,但总风化速率却减少,因为获得有效降水的陆地面积减少

Energetically-limited precipitation introduces bifurcation and hysteresis into the carbon cycle

碳循环中鞍节点分叉的示意图

蓝色曲线表示全球风化速率随pC02的变化

绿色区域,风化随pCO2(和表面温度)增加而增加;红色区域,风化随pCO2(和表面温度)增加而减少 当pCO2等于P1(橙色)和pCO2等于P2(黑色)时,风化速率与逸出速率(V)相等 P1平衡稳定,风化起到负反馈,P2平衡不稳定,硅酸盐风化表现出正反馈

不足以得出地球化学宜居带相对于传统宜居带收缩的结论:海底风化?云?岩性?自转?
确实揭示了传统宜居带外缘宜居性可能失效的机制

感谢大家的倾听!

THANK YOU FOR YOUR LISTENING!